Pre-class Warm-up!!!
If we have a function $f:[a, b] \rightarrow R$, what does the Fundamental Theorem of Calculus say?
a. $\int_{a}^{b} f d x=\left.\frac{d f}{d x}\right|_{b}-\left.\frac{d f}{d x}\right|_{a}$
vb. $\int_{a}^{b} \frac{d f}{d x}=f(b)-f(a)$
c. $\int_{a}^{b} \frac{d f}{d x}=f(x)+(b-a)$
d. $\frac{d}{d x} \int_{a}^{b} f d x=f(x)$
e. None of the above

FAQs.

1. What is the quiz on? Ausw: the maternal we did last wed 2. What resources do I have to study?

Answer. Go to the module for this week You see

- Practice quiz
- videos
in Homework and readings you find
- Carter's notes
- Webby notes
- HW question list
- Insight readingS

If Webb's lectures aren + there yet, go to Webb's hone page and chat on lecture notes.

## Section 8.1 Green's theorem

## We learn:

- What the theorem says
- A couple of ways of writing it
- How it is useful to make calculation easier
- How it can be used to compute area

George Green (1793-1841) stated his theorem in 1828 in a pamphlet about electricity and magnitism.

Also, Mikhail Ostrogradsky (1801-1861) stated the theorem in 1828 as well.

Green's theorem.
Let $D$ be a bounded region in $R \wedge 2$ that is the union of simple regions with boundary a union of finitely many simple closed curves. Orient the boundary $\partial \mathrm{D}$ so that D is on the left.
If $F(x, y)=(P(x, y), Q(x, y))$ is a vector field then

$$
\begin{aligned}
& \int_{\partial D} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y \\
& \int_{\partial D} F \cdot d \underline{s}
\end{aligned}
$$

The left side can also be written and computes the work done by $F$ in going round the boundary. The right side can have $d A$ instead of $d x d y$.


In the book they write $\mathrm{C} \wedge+$ for the boundary of $D$ oriented in this way.

It's a 2-D resum of the fund. The of calculus.

Example.
Let $F(x, y)=\left(e^{\wedge}(\sin x)+2 x y, \sqrt{ }\left(y^{\wedge} 3+2\right)+x^{\wedge} 2+x\right)$. Find the work done by $F$ in moving counterclockwise round the unit circle $x^{\wedge} 2+y^{\wedge} 2=1$.


Solution Let $D$ be the unit disk.

$$
\begin{aligned}
& \int_{\partial D} F-d \underline{s}=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y \\
& \approx \iint_{D}(2 x+1-2 x) d x d y=\iint_{D} 1 d x d y
\end{aligned}
$$

$=$ Area of $D=\pi$
$B / C \frac{\partial Q}{\partial x}=0+2 x+1$

$$
\frac{\partial P}{\partial y}=0+2 x
$$

Example.
The following integrals compute the area of $D$ :

$$
\begin{aligned}
& \int_{\partial D} x d y, \quad \int_{\partial D}-y d x, \frac{1}{2} \int_{\partial D} x d y-y d x \\
& \int_{\partial D}\left(\frac{\partial x}{\partial x}-0\right) d x d y=\int_{D} 1 d x d y
\end{aligned}
$$

Find the area of the ellipse parametrized by

$$
c(t)=(2 \cos t, 3 \sin t)
$$

Green's theorem $\int_{\partial D} P d x+Q d y=\int_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial D}{\partial y}\right) d x d y$
We show separately $\quad \int_{\partial D} P d x=\int_{D}-\frac{\partial P}{\partial y} d x d y$
$\operatorname{and} \int_{\partial D} Q d y=\int_{D} \frac{\partial Q}{\partial x} d x d y$

We do this on simple regions D.
For a y-simple region we show

$$
\int_{\partial D} P d x=\int_{D}-\frac{\partial P}{\partial y} d x d y
$$

$$
\begin{aligned}
& \int_{\gamma D} P d x=\int_{x=a}^{y=u(x)} P \int_{x=b}^{x=a} P(x, u(x)) d x+\int_{x=a}^{x=b} P(x, v(x)) d x \\
& =\int_{a}^{b}(-P(x, u(x))+P(x, v(x))) d x \\
& =\int_{a}^{b}\left(-\int_{v(x)}^{u(x)} \frac{\partial P}{\partial y} d y\right) d x \\
& =\int_{D}-\frac{\partial P}{\partial y} d x d y
\end{aligned}
$$

Other ways to write

$$
\int_{\partial D} P d x+Q d y=\int_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

1. $\int_{\partial D}-P d x+Q d y=\int_{D}\left(\frac{\partial Q}{\partial x}+\frac{\partial P}{\partial y}\right) d x d y$ and now $\frac{\partial Q}{\partial x}+\frac{\partial P}{\partial y}$ is $\operatorname{div}(Q, P)$ The left side has an interpretation in terms of a unit nounal vector to $\partial D$, see the book
2. From $F(x, y)=(P, Q)$ construct the vector field $(P, Q, 0)$ on $R^{3}$
Now $\nabla_{x}(P, Q, O)=\left(0,0, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)$
So $\int_{\partial D} P d x+Q d y=\int_{D} \nabla x(P, Q, 0) \cdot k d A$
$\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is the 'scalar curl' of $(P, Q)$.
